frexpのヘルプ・マニュアル
日本語 英語
frexp --help
man frexp
FREXP(3) Linux Programmer’s Manual FREXP(3)
名前
frexp, frexpf, frexpl - 浮動小数点実数を小数成分と整数成分に変換する
書式
#include
double frexp(double x, int *exp);
float frexpf(float x, int *exp);
long double frexpl(long double x, int *exp);
-lm でリンクする。
glibc 向けの機能検査マクロの要件 (feature_test_macros(7) 参照):
frexpf(), frexpl(): _BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 600
|| _ISOC99_SOURCE; or cc -std=c99
説明
frexp() 関数は浮動小数点実数 x を正規化小数と指数に分解し、指数を *exp
に格納する。
返り値
frexp() 関数は正規化小数を返す。引数 x がゼロでない場合、この正規化小数
は x に 2 の累乗を乗じたものであり、その絶対値は常に 1/2 以上 1 未満 、
つまり [0.5,1) となる。
x がゼロの場合、正規化小数はゼロになり *exp にはゼロが格納される。
x が NaN の場合、NaN が返される。 *exp の値は不定である。
x が正の無限大 (負の無限大) の場合、正の無限大 (負の無限大) が返される
。 *exp の値は不定である。
エラー
エラーは発生しない。
準拠
C99, POSIX.1-2001. double 版の関数は SVr4, 4.3BSD, C89 にも準拠して い
る。
例
このプログラムを実行すると以下のような結果となる:
$ ./a.out 2560
frexp(2560, &e) = 0.625: 0.625 * 2^12 = 2560
$ ./a.out -4
frexp(-4, &e) = -0.5: -0.5 * 2^3 = -4
プログラムのソース
#include
#include
#include
#include
int
main(int argc, char *argv[])
{
double x, r;
int exp;
x = strtod(argv[1], NULL);
r = frexp(x, &exp);
printf("frexp(%g, &e) = %g: %g * %d^%d = %g\n",
x, r, r, FLT_RADIX, exp, x);
exit(EXIT_SUCCESS);
} /* main */
関連項目
ldexp(3), modf(3)
2008-10-29 FREXP(3)
FREXP(3) Linux Programmer’s Manual FREXP(3)
NAME
frexp, frexpf, frexpl - convert floating-point number to fractional and
integral components
SYNOPSIS
#include
double frexp(double x, int *exp);
float frexpf(float x, int *exp);
long double frexpl(long double x, int *exp);
Link with -lm.
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
frexpf(), frexpl(): _BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 600
|| _ISOC99_SOURCE; or cc -std=c99
DESCRIPTION
The frexp() function is used to split the number x into a normalized
fraction and an exponent which is stored in exp.
RETURN VALUE
The frexp() function returns the normalized fraction. If the argument
x is not zero, the normalized fraction is x times a power of two, and
its absolute value is always in the range 1/2 (inclusive) to 1 (exclu-
sive), that is, [0.5,1).
If x is zero, then the normalized fraction is zero and zero is stored
in exp.
If x is a NaN, a NaN is returned, and the value of *exp is unspecified.
If x is positive infinity (negative infinity), positive infinity (nega-
tive infinity) is returned, and the value of *exp is unspecified.
ERRORS
No errors occur.
CONFORMING TO
C99, POSIX.1-2001. The variant returning double also conforms to SVr4,
4.3BSD, C89.
EXAMPLE
The program below produces results such as the following:
$ ./a.out 2560
frexp(2560, &e) = 0.625: 0.625 * 2^12 = 2560
$ ./a.out -4
frexp(-4, &e) = -0.5: -0.5 * 2^3 = -4
Program source
#include
#include
#include
#include
int
main(int argc, char *argv[])
{
double x, r;
int exp;
x = strtod(argv[1], NULL);
r = frexp(x, &exp);
printf("frexp(%g, &e) = %g: %g * %d^%d = %g\n",
x, r, r, FLT_RADIX, exp, x);
exit(EXIT_SUCCESS);
} /* main */
SEE ALSO
ldexp(3), modf(3)
COLOPHON
This page is part of release 3.22 of the Linux man-pages project. A
description of the project, and information about reporting bugs, can
be found at http://www.kernel.org/doc/man-pages/.
2008-10-29 FREXP(3)